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SUMMARY

Several promising new techniques for efficient and accurate numerical solu-
tion of large-scale fluid flow problems have been developed. These methods in-
clude self-adaptive mesh modification techniques for applications requiring front-
tracking and local grid refinement as well as new preconditioning ideas for ef-

ficient implementation. Properties of systems of hyperbolic conservation laws
have been obtained which will aid in development of acc irate front-tracking al-
,orithms. Adaptive grid refinement techniques developed include moving grid

method.G, local, fixed refinement involving linked-list data structures, and certain

local patch refinement ideas which have great potential for ease of implementa-
tion in existing large scale codes. Domain decomposition concepts for obtaining
efficient preconditioners for iterative techniques have proved quite useful both
for local patch refinement and for the solution of problems with rapidly varying

* coefficients. The fast adaptive algorithms being developed have high potential
for both parallelization and vectorization. The algorithms have been designed
to take advantage of the emerging parallel and vector-oriented computer archi-

tectures. Finally, the incorporation of these fast algorithms in accurate finite
element, collocation, and finite difference methods is underway.,

RESEARCH OBJECTIVES

Many phenomena in large-scale fluid dynamics problems are sufficiently lo-
calized that self-adaptive local grid refinement techniques are essential for their
numerical simulation. These simulations involve the numerical solution of large

coupled systems of nonlinear partial differential equations. In the long run, effi-
cient, self-adaptive refinement methods must be developed for three-dimensional,
fluid flow problems with important transient character. The research objectives

for this project were to develop efficient and accurate numerical modeling tech-
niques for large fluid flow applications involving efficient preconditioning concepts
and self-adaptive local grid refinement methods.

We considered four fairly different types of self-adaptive grid refinement tech-

niques: 1) local refinement on a fixed mesh, 2) adaptive movement of the compu-

tational mesh to give better resolution of changing local phenomena, 3) dynamic,
element-by-element refinement of an initial coarse grid, and 4) patch uniform re-

* .' finement which also can be adapted to changing phenomena. One objective of
this research was to develop fairly general adaptive techniques which are effi-

*cient for time-dependent problems and capable of being incorporated easily in
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large-scale simulation. Grid modification methods associated with finite element,
collocation and finite difference discretization were studied.

Adaptive gridding methods are also required to locate and follow shocks or
near-shocks. Research has been aimed at shock tracking or shock capturing
techniques. Although many applications require the tracking of discontinuities
or interfaces, the common feature of these problems is geometry. One research
goal was to develop software to handle such geometries in a manner which is basi-
cally independent of the physics of the applications, if possible. Since hyperbolic
conservation laws are the equations which give rise to shocks, this research also
involves study of Riemann problems for hyperbolic equations.

STATUS OF THE RESEARCH

O A. Adaptive and Local Grid Refinement Techniques

The different grid refinement techniques that we have been studying are de-
scribed and compared briefly in references [1-4, 6-8, 10, 17-20, 27-28, 31-34,
36-39, 41, 43, 451. The survey presented in [18] compares some of these tech-
niques with different methods that are being considered by others. References
[3,6,16-21, 25, 311 illustrate how some of these techniques are being applied to

' certain fluid dynamics problems. We discuss four different approaches to grid
refinement below.

The first method that we have studied yields truly local grid refinement ca-
.. pabilities, where an arbitrary level of refinement can be applied in an arbitrary

region or at an arbitrary point in space or time. A multilinked tree data structure
has been developed for efficient matrix set-up and solution. The dynamic multi-
linked list representation efficient, allows both placement of mesh refinement and
the removal of local meshes.

The data structure supports a grid refinement capability having a set of pre-
determined macro-cells. Each macro-cell can be locally subdivided by a repeated
nested refinement into local elements or cells. The tree structure describes the
local cell arrangements. A global forest-like structure describes the macro-cell
interrelationships. Since the individual trees can change dynamically, factoriza-
tion of the codes is very difficult. Parallelization at the forest and lower levels in
the trees has been addressed in 10, 281. Implementation of these algorithms on
the Alliant FX/8 Parallel Architecture, purchased through a DOD grant for our

,9. new Institute for Scientific Computation, is underway.
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The second type of adaptive techniques under study involves the movement
of grid nodes in time to "optimal" locations for the numerical approximations.
Moving finite element (MFE) methods have been developed and extended by
Miller, Djomehri and colleagues [4, 40, 41, 43, 45]. Djomehri has modified his
MFE code in one space dimension (1-D) and has applied it to several partial
differential equations (PDEs) of hyperbolic and/or parabolic type. The code was
implemented to study the behavior of the solution of a model problem in the
nonlinear instability analysis of a modified form of Burgers' equation in a joint
paper with Straughan, Ewing, Djomehri and Jacobs [31]. This was a prototype of
a more complicated problem about three dimensional flows for an incompressible
fluid with highly nonlinear effects. The competition and interaction between var-
ious dominating terms such as convection, diffusion, and nonlinear source terms

.' in the equation are responsible for generating sharp boundaries and interior lay-
ers. The MFE method was employed using only 20-30 moving grid points for this
problem, yielding very accurate results. The Burgers' equation examples were
also solved by the fixed finite element (FFE) algorithm for the comparison. The
FFE approach requires at least 1000 fixed grid points to achieve the same order

N .. of accuracy obtained by the MFE method [31]. Moreover, it has been observed
that for rather thin boundary layers the FFE approach becomes unstable.

Djomehri and George have also applied the MFE method to moving bound-
ary problems. Several versions of the classical ice-water Stefan problem have
been solved in one space dimension. The Stefan problem provides an excellent
test case for numerical methods. In these problems the spatial domain occu-
pied by the fluid deforms as a function of time. The state of the fluid near the
boundary determines the moving boundary. The MFE code has been modified

and successfully accounts for the timewise deforming spatial domain solutions
in one-dimension. A recent paper submitted by George and Djomehri [43] fur-
ther discusses and compares the solution of several interesting problems with
preexisting resuits.

0
Djomehr has also applied the MFE code to nonlinear shallow water problems

in one dimension to simulate the "dam-break" problem with step-function initial
conditions. After the break, both a shock wave and a rarefaction wave propagate
in different directions, reflect from the boundaries, and intract again. The MFE

0. method has resolved the nonlinear hyperbolic shallow water waves quite accu-
rately in comparison with the exact and other numerical solutions. Results will

*-'"- appear in a forthcoming paper by Djomehri [451.

The third approach to local grid refinement involves dynamic, element-by-

- clement refinement of an initial coarse grid. Allen is currently working on this
Wp
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type of refinement scheme for advection-dominated flows. He has worked with
a graduate student, Mark Curran, on the development of a general code to
solve quasilinear equations of order three or less. This general formi includes the
Buck ley- Leverett equation (see 12, 131), Burgers' equation, the inviscid Burgers'
equations, nonlinear reaction-diffusion equations, and soliton-producing equa-
tions of the Korteweg-deVries type. The aim of this effort is to develop stable
computational procedures that include adaptive local grid refinement in Hermite
cubic trial spaces. To date this research has yielded an h-adaptive refinement
scheme for linear advection-diffusion equations allowing arbitrary refinement in
any coarse-grid element. A report of this scheme will appear in a paper by Allen
and Curran [38]. Extensions of this method to the nonlinear Burgers' equation
are near completion and will appear in another paper by Allen and Curran [39].
This work will provide a basis for comparison and further analysis with the pre-
viously described MFE codes for Burgers' equation developed by Djomnehri et
al.

The fourth type of adaptive refinement, is patch refinement. Here, patches are
chosen in regions of interest and uniform refinement is performed on the patches.

-~ This local refinement is much easier to vectorize than truly local refinement. In
addition, each patch can be sent to a different processor to achieve parallelism in
the algorithms. Ewing has interacted with McCormick and Thomas from neigh-
boring Colorado schools in a technique called the fast adaptive composite (FAG)
grid technique. This method, involving a local multigrid solver on the patches,
is described in [2]. Ewing is also working with Bramble, Pasciak and Schatz 1321
on some exciting new techniques for identifying suitable preconditioners, to tie
a local patch solution to a global solution process efficiently without disrupting
the basic algorithms and codes. There is extensive potential in these methods to
combine local refinement methods with existing large-scale codes. These ideas
are similar to domain decomposition techniques, which many investigators have
found useful in segmenting large problems. These methods have great potential
for parallel algorithm development and will be implemented on our new parallel
architecture Alliant FX/8.

The patch adap. ive refinement techniques developed in [321 have been com-
bined wvith operator splitting methods and applied to fluid flow problems by

* Ewing and coworkers in [28, 29, 33, 37]. The operator-splitting treats the hy-
% perbolic part of a trans port-dom inated diffusion process via modified miethod of

cha-racteristic methods (see '291 and references in 29, 33, 37]) and the difFusive
part via Galerkin or Petrov-Galerkin techniques.

4
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B. Discretization and Efficient Iterative Solution Techniques

This general area of research comprises three related subjects: the exploita-
tion of mixed finite element concepts for the development of highly accurate
discretizations, the implementation of efficient iterative solvers for large linear
systems, and the construction of stable iterative procedures for solving discrete
systems arising from nonlinear problems.

Several papers have discussed our new developments in mixed finite element
methods for obtaining accurate fluid velocities [9, 16, 19, 20, 24, 25]. These
methods are very useful for applications with changing local flow properties or
for various singularity-removal techniques [9, 16, 25]. We are currently trying to
incorporate these methods in existing large-scale finite difference simulators for
fluid flow problems [24].

The mixed finite element methods that we have developed utilize precondi-
tioned conjugate-gradient iterative procedures to solve the linear algebraic sys-
tems generated by the discretization. We are studying a wide variety of ways
to obtain better preconditioners that are applicable to a wide variety of prob-
lems. Obeysekare, Allen, George, Ewing, Koebbe, and Oliver have developed
nested-factorization, generalized conjugate-residual codes and have applied them
successfully to solve two-dimensional nonlinear hyperbolic conservation laws in
i301. This problem, which stems from a non self-adjoint operator, produces both
strongly asymmetric matrix equations and shocks. These are both difficult prob-
lems that can be treated efficiently via these methods.

In a more recent investigation of iterative linear solution techniques, Allen and
Ewing are working with a graduate student (Peng Lu) to investigate smoothers
of the block-iterative type that will be appropriate for multigrid solutions of
mixed finite-element discretizations. Earlier work on this grant (see, for exam-
ple [91) has demonstrated the effectiveness of mixed methods for such problems
as determining underground fluid velocities. The convergence properties of the
block-iterative schemes are now understood in some cases, ind ongoing work
focuses on coding and testing their residual smoothing properties.

A different line of research on iterative techniques concerns the iterative so-
lution of the nonlinear algebraic equations that result from the discretization
of nonlinear PDEs. In this vein, Allen has developed finite-element collocation
solutions to nonlinear wave problems. This work has led to a successful class
of Newton-like techniques for implicitly solving problems of the nonlinear heat-

*equation variety that arise in simulating transient flows in unsaturated porous

NW
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media. These techniques yield stable, mass-conserving formulations of the finite-
element collocation method in problems involving sharp wetting fronts. Results
of this work appear in Allen and Murphy !11, 261 and Murphy and Allen [2L .

Related work by M.A. Celia at M.I.T. has borrowed this iterative approach to ad-
vantage in alternating-direction collocation schemes, which promises even greate-
computational efficiency. Allen and Celia have recently begun considering the
adaptation of these techniques to parallel computing environments.

C. Hyperbolic Equations and Conservation Laws

Eli Isaacson has been working on both computational and analytical aspects
of Riemann problems for conservation laws. These problems arise in combustion,
mach stem and various shock calculations, transonic flow around airfoils, mul-
tiphase flows in porous media, and tracking discontinuities in simulations. The
main compu-ational work is the development, with D. Marchesin and B. Plohr,

: of a general purpose computer code to solve Riemann problems for 2 x 2 systems
of conservation laws. This code is currently being incorporated in the general
front tracking code of J. Glimm, 0. McBryan, et al. The Riemann solver is
needed to advance the front at each time step. A by-product of this work has
been the development of a computer code that determines level surfaces of vectori
functions of several variables 461. This code is being modified for vectorization
and parallelization.

Analytical work completed with D. Marchesin, B. Plohr, and B. Temple con-
cerns the classification of solutions of Riemann problems for hyperbolic conser-
vation laws near an isolated singularity [5, 14, 15, 221. The behavior of the shock
and rarefaction waves near such a point is nonclassical. In fact, many new fea-
tures in the structure of solutions of conservation laws have been discovered in
these problems i49, 501. This has led to -he analysis of the structure of general
wave curves for conservation laws '471. In addition, a new type of shock wave
seems to he necessary to be able to solve certain problems. Htowever, it is now
necessary .o determine by a physical criterion when such shock waves are admis-
sible. A case has been studied in which classical shock waves lead to a solution,
but a different solution is obtained when the physical admissibility criterion of

* .viscous profiles is applied [481.

Finally, work recently completed with B. Temple concerns the structure of
asymptotic states for a specific conservation law .19'. This work indicates that,
the standard ideas about stability of shock waves should be modified to include
additional physical information.
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Allen has also done some work on a coupled system of hyperbolic PDE's gov-
erning gr v ity waves in shallow water bodies and large-scale atmospheric motions.
This work uses a Galerkin finite-element procedure together with a quadrature
technique capable of damping spurious waves of length 2Ax that afflict standard
finite-difference methods. The objective of this research is to develop multigrid
algorithms suitable for hyperbolic wave equations. So far, the multigrid algo-
rithms that have been coded have led only to marginal improvements in CPU
time over standard solution procedures. However, if the difficulties could be
overcome, the resulting technique would have broad applications ranging from
numerical weather prediction to seismic signal modeling.

The work with Sochacki et al. has developed some new concepts for deal-
ing with absorbing boundary conditions [421. We have developed a scheme for
treating a curved surface that occurs in the grid as a result of discontinuous
changes in material properties. This paper is being revised for Geophysics, and

* has applications to local refinement near the curved surface.
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